Exam Lie Groups in Physics

Date

November 4, 2014

Room

V5161.0293

Time

9:00 - 12:00

Lecturer

D. Boer

- Write your name and student number on every separate sheet of paper
- Raise your hand for more paper
- You are not allowed to use the lecture notes, nor other notes or books
- The weights of the three problems are given below
- Answers may be given in Dutch
- Illegible handwriting will be graded as incorrect
- Good luck!

Weighting

Result
$$=\frac{\sum points}{10} + 1$$

Problem 3

Consider the Lie group $E^+(2)$ of proper Euclidean transformations in two dimensions that consists of elements $(R|\vec{a})$, where $R \in SO(2)$ and $\vec{a} = (a_x, a_y) \in \mathbb{R}^2$. An element $(R|\vec{a})$ acts on a two-vector \vec{r} as a rotation followed by a translation: $(R|\vec{a})\vec{r} = R\vec{r} + \vec{a}$.

(a) Derive the composition law in $E^+(2)$, in other words, specify R_3 and \vec{a}_3 in $(R_1|\vec{a}_1)(R_2|\vec{a}_2)$ = $(R_3|\vec{a}_3)$. Furthermore, show that this multiplication rule is satisfied by the matrix representation:

$$D((R|\vec{a})) = \begin{pmatrix} R_{11} & R_{12} & a_x \\ R_{21} & R_{22} & a_y \\ 0 & 0 & 1 \end{pmatrix},$$

and show that this is a reducible representation by indicating an invariant subspace of the carrier space.

(b) Consider in the above three-dimensional representation D those elements of $E^+(2)$ that are infinitesimally close to the 3×3 identity matrix and use them to derive the Lie algebra of $E^+(2)$:

$$[\lambda, N_1] = iN_2,$$

 $[\lambda, N_2] = -iN_1,$
 $[N_1, N_2] = 0.$

- (c) Derive the quadratic Casimir operator of $E^+(2)$.
- (d) Explain the role of $E^+(2)$ in the analysis of the representations of the Poincaré group.

